Stormwater Management Plan

Lot 51 Wilkinson Road, Tuan

18 February 2025 J9009 v1.2

Job No: J9009 v1.2

Job Name: Lot 51 Wilkinson Road, Tuan

Report Name	Date	Report No.
Stormwater Management Plan	22 May 2024	J9009 v1.0
Stormwater Management Plan	5 June 2024	J9009 v1.1
Stormwater Management Plan	18 February 2025	J9009 v1.2

- Project Engineer: Jack Hu BE Civil (Hons), MIEAust, CPEng, NER, RPEQ E jack@stormw.com.au
- Reviewed By:Steve HughesBE Civil, MIEAust, CPEng, NER, RPEQ 16468

Storm Water Consulting Pty Ltd ACN 105 078 377

ACN 105 078 577

1/820 Old Cleveland Rd, Carina QLD 4152 07 3398 4992 www.stormw.com.au

Table of Contents

1.0	Int	roduction1
2.0	Sit	e Conditions2
	2.1	Existing Site2
	2.2	Developed Site
3.0	Ну	drologic Analysis4
4.0	Ну	drodynamic Modelling6
	4.1	Existing TUFLOW Model6
	4.2	Developed TUFLOW Model6
	4.3	Minimum Lot Levels7
5.0	Sto	ormwater QUality Management8
	5.1	State Planning Policy (July 2017)8
	5.2	Water Quality – Construction Phase9
	5.3	Water Quality – Operational Phase10
6.0	Со	nclusions11
List	of Ap	pendicies12

1.0 INTRODUCTION

Storm Water Consulting Pty Ltd was commissioned by M & JM Grunske to prepare a Stormwater Management Plan for the proposed development on Lot 51 Wilkinson Road, Tuan.

This report has been prepared to address the following issues associated with the proposed Reconfiguration of Lot (ROL):

- Identify the extent of flooding during a major overland flow event, assess potential impacts on neighbouring properties and set minimum lot levels.
- Address stormwater quality requirements of the State Planning Policy.

2.0 SITE CONDITIONS

2.1 Existing Site

The site is a vacant lot vegetated by short grass and sparse tree cover. The site is bound by Wilkinson Road to the east, Tuan Forest to the south and west and residential properties to the north. An existing site plan is presented in Figure 1, Appendix A. A locality plan is presented in Figure 2.1 below.

Figure 2.1 – Locality Plan (Source: Google Earth)

2.2 Developed Site

It is proposed to subdivide the site into freehold lots (Reconfiguration of Lot). A developed site plan is presented in Figure 2, Appendix A. Development plans are presented in Appendix E.

The site is located within the Great Barrier Reef wetland protection area, as demonstrated in Figure 2.2 on the following page, as well as in Figure 10, Appendix A. The proposed development avoids the wetlands and avoids the direct discharge of stormwater into the mapped wetland area. The proposed development would comply with PO3, PO4 and PO5 of State Code 9 (extract presented in Figure 2.3).

Figure 2.2 – Extract from Map of Great Barrier Reef Wetland Protection Areas

Hydrology PO3 Development maintains or improves the existing surface and groundwater hydrology in a wetland protection area. Water quality PO4 Development does not unacceptably impact the water quality of the wetland in the wetland protection area and in the wetland buffer.

PO5 Development does not use the wetland in the wetland protection area for stormwater treatment.

Figure 2.3 – Extract from State Code 9: Great Barrier Reef Wetland Protection Areas

3.0 HYDROLOGIC ANALYSIS

The property is affected by overland flow from a catchment to the west, which flows through the site toward the north-eastern site corner. An open drain is located at the rear of the site, within Tuan Forest. The open drain flows in a northerly direction, before turning to flow in an easterly direction where flows spread out, flowing across bushland before traversing across Wilkinson Road at Point-A, heading toward the Great Sandy Strait. A catchment plan is presented in Figure 3, Appendix A.

Rational Method calculations were undertaken for the catchments flowing to Point-A (in accordance with recommendations contained in QUDM 2016). A summary of the peak flows is presented in Table 3.1 below. Detailed Rational Method calculations are presented in Appendix C.

AEP	Point-A Peak Flow
%	m³/s
63	4.26
50	5.13
20	7.89
10	9.92
5	12.14
2	15.88
1	18.73
0.5	21.36

 Table 3.1 – Rational Method Calculation Summary

URBS hydrologic modelling was undertaken to produce inflow hydrographs for input into the TUFLOW hydrodynamic model. A schematic representation of the URBS model is presented in Figure 4, Appendix A. URBS data files are presented in Appendix D. A summary of the adopted URBS parameters is presented in Table 3.2 below.

AEP Storage Coefficient		Non-Linearity Index	Initial Rainfall Loss	Continuing Rainfall Loss				
%	α	m	mm	mm/hr				
63	1.2	0.8	15	2.5				
50	1.2	0.8	15	2.5				
20	1.2	0.8	15	2.5				

Table 3.2 – URBS Model Parameters

10	1.2	0.8	15	2.5
5	1.2	0.8	15	2.5
2	1.2	0.8	15	2.5
1	1.2	0.8	0	2.5
0.5	1.2	0.8	0	2.5

A comparison of the peak URBS flows and Rational Method flows at Point-A is presented in Table 3.3 below.

AEP	Rational Method Flows	ational URBS Flows Difference		Difference	
%	m³/s	m³/s	m³/s	%	
63	4.26	3.50	0.76	18%	
50	5.13	4.33	0.80	16%	
20	7.89	7.38	0.51	6%	
10	9.92	10.27	0.35	4%	
5	12.14	13.07	0.93	8%	
2	15.88	17.12	1.24	8%	
1	18.73	20.72	1.99	11%	
0.5	21.36	24.31	2.95	14%	

Table 3.3 – Comparison of Flows at Point-A

The results presented above show that the URBS flows compare favourably with the Rational Method flows. The URBS model would therefore generate flows suitable for adoption in the TUFLOW model as boundary conditions. The 1% AEP inflow hydrographs adopted in TUFLOW are presented in Figure 3.1 below.

Figure 3.1 – Inflow Hydrographs for TUFLOW

4.0 HYDRODYNAMIC MODELLING

TUFLOW 2D hydrodynamic modelling was undertaken to determine the extent of inundation, to assess potential hydraulic impacts and to set minimum lot levels for the proposed development. The model setup and results are discussed below.

4.1 Existing TUFLOW Model

A schematic of the existing TUFLOW model is presented in Figure 5, Appendix A. The TUFLOW model was based on a 2m grid size with elevation data assigned from the ALS survey data sourced from the Queensland State Government. The inflow hydrographs presented in Figure 3.1 were input into the model as discharge-time (QT) boundary conditions. The downstream boundary condition was set as a height-discharge (HQ) relationship based on the natural ground slope. Manning's roughness coefficient values of n=0.10 and n=0.02 were used in the model to represent private properties and roads respectively.

The existing 1% AEP overland flow contours, depths, velocities and velocity-depths are presented in Figures 6a to 6d, Appendix A respectively. The model results show that the majority of the property would be inundated during a 1% AEP event. The existing 0.5% AEP overland flow contours are presented in Figure 6e, Appendix A.

4.2 Developed TUFLOW Model

A schematic of the developed TUFLOW model is presented in Figure 7, Appendix A. The developed model replicates the existing model and incorporates changes to the site condition based on the proposed development. Filled building pads (20m x 40m) were incorporated as obstructions within each lot (modelled using a 2d_z layer). All other model parameters and inputs remain the same as the existing model.

The developed 1% AEP overland flow contours, depths, velocities and velocity-depths are presented in Figures 8a to 8d, Appendix A respectively. The developed 0.5% AEP overland flow contours are presented in Figure 8e, Appendix A. An afflux impact plot of the model results is presented in Figure 9, Appendix A. The plot shows that the proposed development would not create any adverse impacts on neighbouring private properties. The majority of the impacts are contained within the road reserve, within the Tuan Forest land, or in a location where no existing buildings or structures exist.

4.3 Minimum Lot Levels

Lots are recommended to be set above the highest upstream 1% AEP overland flow level. Figure 4.1 below presents the proposed lot layout. The proposed finished surface levels for each lot are summarised below:

- Lot 1: 2.6 m AHD
- Lot 2: 2.7 m AHD
- Lot 3: 2.9 m AHD
- Lot 4: 3.0 m AHD
- Lot 5: 3.0 m AHD

Figure 4.1 – Proposed Lot Layout

5.0 STORMWATER QUALITY MANAGEMENT

5.1 State Planning Policy (July 2017)

The State Planning Policy (SPP) sets out the requirements for water quality in the interest of the State. Developments which trigger the requirements summarised in Table 5.1 below would need to meet water quality objectives listed in Table B, Appendix 2 of the SPP.

State Planning Policy Criteria	Application to Development
 (1) A material change of use for urban purposes that involves a land area greater than 2500 square metres that: (a) will result in an impervious area greater than 25 per cent of the net developable area, or 	Criterion is NOT applicable to development.
(b) will result in six or more dwellings, or	Criterion is NOT applicable to development.
(2) Reconfiguring a lot for urban purposes that involves a land area greater than 2500 square metres and will result in six or more lots, or	Criterion is NOT applicable to development.
(3) Operational works for urban purposes that involve disturbing more than 2500 square metres of land.	Criterion is NOT applicable to development.

The proposed development would not trigger the requirements of the SPP. General water quality requirements during the construction and operational phases of the development are presented in the following sections.

5.2 Water Quality – Construction Phase

During the construction phase of a development, the pollutants listed in Table 5.2 are typically generated. Measures are required during the construction phase to manage each of these pollutants. These measures may include but are not limited to; bins and mini-skips, erosion and sediment control measures (discussed below), wash down and spill containment areas, bunds, spill clean-up kits, street sweeping and chemical agents.

Pollutant	Source
Litter	Paper, construction packaging, food packaging, cement bags, off- cuts
Sediment	Unprotected exposed soils and stockpiles during earthworks and building operations
Hydrocarbons	Fuel and oil spills leaks from construction equipment
Toxic materials	Cement slurry, asphalt primer, solvents, cleaning agents, wash waters (e.g. from tile works)
pH altering substances	Acid sulphate soils, cement slurry and wash waters

 Table 5.2 – Pollutants Generated during the Construction Phase

5.2.1 Erosion and Sediment Control

During the construction phase of the development, an Erosion and Sediment Control Program (E&SCP) is required to minimise water quality impacts. Such an E&SCP should provide complete and detailed instructions on the following procedures;

- Before construction activities begin, sediment fences should be constructed on the downstream site boundaries and at the base of all proposed soil stockpiles;
- Areas for plant and construction material storage should be designated. Runoff from these areas should be directed to small holding ponds in case of spillages;
- Catch drains at the downstream boundary of construction activities should also be created to ensure that any sediment-laden runoff is contained and directed into a sediment basin and not permitted to flow unmitigated to downstream areas;
- Sediment basins should be constructed at appropriate locations to collect sediment at the downstream ends of the catch drains that convey runoff from exposed areas;
- Site personnel should be educated on the sediment and control measures implemented on site; and
- Following rainfall events greater than 20mm, inspection of silt fences, sedimentation basins and other erosion control measures should be carried out. Where necessary, collected material should be removed and damaged equipment should be replaced immediately.

5.3 Water Quality – Operational Phase

During the operational (post-construction) phase of the proposed development, the following pollutants are typically generated;

- Sediment,
 Heavy Metals,
- Litter,
 Thermal Pollution,
- Faecal coliforms,
 Nutrients (N & P) and
- Hydrocarbons,Surfactants.

6.0 CONCLUSIONS

This report has been prepared to address the following issues associated with the proposed Reconfiguration of Lot (ROL) on Lot 51 Wilkinson Road, Tuan:

- Identify the extent of flooding during a major overland flow event, assess potential impacts on neighbouring properties and set minimum lot levels.
- Address stormwater quality requirements of the State Planning Policy.

The TUFLOW model results show that the proposed development would not create any adverse impacts on neighbouring private properties. The majority of the impacts are contained within the road reserve, within the Tuan Forest land, or in a location where no existing buildings or structures exist. Minimum lot level recommendations are presented in Section 4.3.

The proposed development would not trigger the stormwater quality requirements of the State Planning Policy. General water quality requirements during the construction and operational phases of the development are presented in Sections 5.2 and 5.3.

The site is located within the Great Barrier Reef wetland protection area. The proposed development avoids the use of wetlands for stormwater treatment and avoids the direct discharge of stormwater into the mapped wetland area. The proposed development would comply with PO3, PO4 and PO5 of State Code 9.

Steve Hughes BE Civil, MIE Aust, CPEng, RPEQ 16468

LIST OF APPENDICIES

APPENDIX A – Figures

APPENDIX B – Photographs

APPENDIX C – Rational Method Calculations

APPENDIX D – URBS Data

APPENDIX E – Development Layout

APPENDIX A

Figures

APPENDIX B

Photographs

Photograph 1 – Existing site condition (looking west)

APPENDIX C

Rational Method Calculations

RATIONAL METHOD CALCULATIONS

Table C 1

а

Project: Tuan

STORM

Location: Point A - Total Flow - DS

Comments:

0.5% 40	min
40	min
2000	metres
8	metres
22	min
4	
128.0	min
	2000 8 22 4 128.0

Rainfall Data: Rainfall Intensity Frequency Duration data for TUAN

Sub-Areas and Runoff Coefficients

	Area	ea C10 Areas inc			uded in Calc	Calculations Sep			Separa	arate c100 > 1.0 and c100 < 1.0			
	ha	Exist	Dev	Condition	Area	C10	C10 x A	C10	C10	C10 x A	C10 x A	Area	Area
Cmt	158.03	0.00	0.53	Developed	158.03	0.53	83.76	0.53		83.76		158.03	
					158.03		Sum			83.76	0.00	158.03	0.00
						-	Total		0.530		83.756		158.030
							Individual	0.530	0.000	83.756	0.000	158.030	0.000

	Dischai	rge Cal	culation						
	tc			128.0				_	
C100>1		Average	c10	0.000		Total Ca	atchment		
			Area (ha)	0.00		158.	03 ha		
C100<1	c10 - 2	Average		0.530				•	
			Area (ha)	158.03					
Donth	AED	Ev	Bunoff C	oofficionto	Painfall		Discharge		
Depui	ALP	гу	Kulloll C	Runorr Coerricients			m³/s		
mm	%		C100>1	C100<1	(mm/hr)	1	2	Total	
49	63	0.80	0.00	0.42	22.87	0.00	4.26	4.26	
55	50	0.85	0.00	0.45	25.92	0.00	5.13	5.13	
76	20	0.95	0.00	0.50	35.72	0.00	7.89	7.89	
91	10	1.00	0.00	0.53	42.65	0.00	9.92	9.92	
106	5	1.05	0.00	0.56	49.69	0.00	12.14	12.14	
127	2	1.15	0.00	0.61	59.36	0.00	15.88	15.88	
143	1	1.20	0.00	0.64	67.08	0.00	18.73	18.73	
163	0.5	1.20	0.00	0.64	76.50	0.00	21.36	21.36	
192	0.2	1.20	0.00	0.64	89.77	0.00	25.06	25.06	

EY	Discharge m ³ /s	% of 63% AEP
12	1.064	25%
6	1.702	40%
4	2.128	50%
3	2.554	60%
2	3.192	75%
1.3	3.830	90%
1	4.256	100%

J9009

APPENDIX D

URBS Data

9009_Ex.DAT

"Index", "Area", "UF", "UR", "I"
#1,0.23117,1.00,0.00,0.05
#2,0.13860,1.00,0.00,0.05
#3,0.09571,1.00,0.00,0.05
#4,0.07232,1.00,0.00,0.05
#5,0.27893,1.00,0.00,0.05
#6,0.20129,1.00,0.00,0.05
#7,0.03762,1.00,0.00,0.05
#8,0.05160,1.00,0.00,0.05
#9,0.08068,1.00,0.00,0.05
#10,0.04885,1.00,0.00,0.05
#11,0.15386,1.00,0.00,0.05
#12,0.15437,1.00,0.00,0.05
#13,0.00655,1.00,0.00,0.05
#14,0.00454,1.00,0.00,0.05
#15,0.00272,1.00,0.00,0.05
#16,0.01157,1.00,0.00,0.05
#17,0.00128,1.00,0.00,0.05
#18,0.00868,1.00,0.00,0.05
#19,0.04047,0.00,1.00,0.05
#20,0.07365,0.00,1.00,0.20
#21,0.00742,0.00,1.00,0.80
#22,0.30520,1.00,0.00,0.05
#23,0.19305,0.80,0.20,0.15

9009_Ex.U

Tuan - Existing	3				
MODEL: Basic					
USES: L, U					
Default Paramet	ters: al	pha=1.20 m=0.8			
Catchment File	=9009_Ex	.dat			
Rain #13	L=0.067				
Store.					
Rain #14	L=0.046				
Get.					
Route thru	#15	L=0.086			
Store.					
Rain #15	L=0.059				
Store.					
Rain #16	L=0.067				
Get.					
Get.					
Route thru	#17	L=0.097			
Store.					
Rain #17	L=0.053				
Store.					
Rain #18	L=0.090				
Get.					
Get.					
Route thru	#11	L=0.030			
Store.					
Rain #9	L=0.140				
Route thru	#11	L=0.241			
Add Rain	#11	L=0.356			
Get.					
Route thru	#19	L=0.148			
Add Rain	#19	L=0.161			
Print. Pl					
Route thru	#21	L=0.042			
Add Rain	#21	L=0.241			
Store.					
Rain #7	L=0.131				
Route thru	#8	L=0.157			
Add Rain	#8	L=0.167			
Route thru	#10	L=0.200			
Add Rain	#10	L=0.104			
Route thru	#12	L=0.344			
Add Rain	#12	L=0.378			
Route thru	#20	L=0.153			
Add Rain	#20	L=0.217			
Store.					
Rain #1	L=0.346				
Route thru	#2	L=0.534			
Store.					
Rain #2	L=0.231				
Store.					

```
#3
             L=0.286
Rain
Get.
Get.
Route thru
             #4 L=0.599
Store.
Rain
      #4
             L=0.301
Store.
Rain
      #5
             L=0.351
Get.
Get.
Route thru
              #6
                    L=0.350
Add Rain
              #6
                    L=0.419
Route thru
             #20
                     L=0.323
Store
      #22
             L=0.412
Rain
                    L=0.347
Route thru
              #23
Add Rain
              #23
                    L=0.354
Get.
Get.
Get.
Print. P2
end of catchment details.
```

9009_Dev1.DAT

"Index", "Area", "UF", "UR", "I" #1,0.23117,1.00,0.00,0.05 #2,0.13860,1.00,0.00,0.05 #3,0.09571,1.00,0.00,0.05 #4,0.07232,1.00,0.00,0.05 #5,0.27893,1.00,0.00,0.05 #6,0.20129,1.00,0.00,0.05 #7,0.03762,1.00,0.00,0.05 #8,0.05160,1.00,0.00,0.05 #9,0.08068,1.00,0.00,0.05 #10,0.04885,1.00,0.00,0.05 #11,0.15386,1.00,0.00,0.05 #12,0.15437,1.00,0.00,0.05 #13,0.00655,1.00,0.00,0.05 #14,0.00454,1.00,0.00,0.05 #15,0.00272,1.00,0.00,0.05 #16,0.01157,1.00,0.00,0.05 #17,0.00128,1.00,0.00,0.05 #18,0.00868,1.00,0.00,0.05 #19,0.04047,0.00,1.00,0.31 #20,0.07365,0.00,1.00,0.20 #21,0.00742,0.00,1.00,0.80 #22,0.30520,1.00,0.00,0.05 #23,0.19305,0.80,0.20,0.15

9009_Dev1.U

Tuan - MODEL:	Develop Basic	mentl		
USES: L	, U			
Default	Parame	ters: al	pha=1.20	m=0.8
Catchme	nt File	=9009_De	v1.dat	
_				
Rain	#13	L=0.067		
Store.				
Rain	#14	L=0.046		
Get.				
Route t	hru	#15	L=0.086	
Store.				
Rain	#15	L=0.059		
Store.				
Rain	#16	L=0.067		
Get.				
Get.				
Route t	hru	#17	L=0.097	
Store.				
Rain	#17	L=0.053		
Store.				
Rain	#18	L=0.090		
Get.				
Get.				
Route t	hru	#17	L=0.287	
Route t	hru	#21	L=0.141	

Store. Rain #19 L=0.161 Get. Print. Pl Route thru #21 L=0.042 L=0.241 Add Rain #21 Store. Rain #9 Rain #9 L=0.140 Route thru #11 L=0.241 Add Rain #11 L=0.356 L=0.356 L=0.203 Route thru #12 Store. Rain #7 L=0.131 #8 I #8 I L=0.157 Route thru #8 L=0.167 #10 L=0.200 #10 L=0.104 #12 Add Rain Route thru Add Rain #12 L=0.344 L=0.378 Route thru Add Rain #12 Get. Route thru #6 L=0.088 Store. Rain #1 L=0.346 #2 L=0.534 Route thru Store. Rain #2 L=0.231 Store. Rain #3 L=0.286 Get. Get. Route thru #4 L=0.599 Store. Rain #4 L=0.301 Store. Rain #5 L=0.351 Get. Get. Route thru #6 L=0.350 Add Rain #6 L=0.419 Get. #20 L=0.323 Route thru Store. Rain #20 L=0.217 Store. Rain #22 L=0.412 #23 L=0.347 #23 L=0.354 Route thru Add Rain Get. Get. Get. Print. P2 end of catchment details.

APPENDIX E

Development Plans

