Stormwater Management Plan

Lot 51 Wilkinson Road, Tuan

5 June 2024 J9009 v1.1

Job No: J9009 v1.1

Job Name: Lot 51 Wilkinson Road, Tuan

Report Name	Date	Report No.
Stormwater Management Plan	22 May 2024	J9009 v1.0
Stormwater Management Plan	5 June 2024	J9009 v1.1

Project Engineer:	Jack Hu BE Civil (Hons), MIEAust, CPEng, NER, RPEQ E jack@stormw.com.au	
Reviewed By:	Steve Hughes BE Civil, MIEAust, CPEng, NER, RPEQ 16468	

Storm Water Consulting Pty Ltd ACN 105 078 377

1/820 Old Cleveland Rd, Carina QLD 4152 07 3398 4992 www.stormw.com.au

Table of Contents

1.0	Int	troduction1
2.0	Sit	e Conditions2
	2.1	Existing Site2
	2.2	Developed Site2
3.0	Ну	drologic Analysis4
	3.1	Hydrologic Impact Assessment4
	3.2	Hydraulic Model Boundary Conditions7
4.0	Ну	drodynamic Modelling8
	4.1	Existing TUFLOW Model8
	4.2	Developed TUFLOW Model8
	4.3	Minimum Lot Levels9
5.0	Ste	ormwater QUality Management10
	5.1	State Planning Policy (July 2017)10
	5.2	Water Quality – Construction Phase11
	5.3	Water Quality – Operational Phase12
6.0	Ste	ormwater Quality Modelling13
	6.1	Source Nodes13
	6.2	Treatment Node – Bio-Retention15
	6.3	MUSIC Analysis16
7.0	Со	nclusions17
List	of Ap	pendicies

1.0 INTRODUCTION

Storm Water Consulting Pty Ltd was commissioned by M & JM Grunske to prepare a Stormwater Management Plan for the proposed development on Lot 51 Wilkinson Road, Tuan.

This report has been prepared to address the following issues associated with the proposed Reconfiguration of Lot (ROL):

- Identify the extent of flooding during a major overland flow event, assess potential impacts on neighbouring properties and set minimum lot levels.
- Assess potential stormwater quantity impacts from the proposed development.
- Conceptualise a stormwater quality treatment train for the proposed development.

2.0 SITE CONDITIONS

2.1 Existing Site

The site is a vacant lot vegetated by short grass and sparse tree cover. The site is bound by Wilkinson Road to the east, Tuan Forest to the south and west and residential properties to the north. An existing site plan is presented in Figure 1, Appendix A. A locality plan is presented in Figure 2.1 below.

Figure 2.1 – Locality Plan (Source: Google Earth)

2.2 Developed Site

It is proposed to subdivide the site into freehold lots (Reconfiguration of Lot). A new road is proposed to be constructed to provide access to the new lots (new cross drainage culverts are proposed below the new road, in front of the site). Drainage pipes are proposed through the site to maintain some flows to the existing dams north of the site (as per the neighbouring property owners' requests). A bio-retention basin is proposed for the development to meet water quality objectives. A widened open drain and diversion berm is proposed on the upstream Tuan Forest land. A developed site plan is presented in Figure 2, Appendix A. Design plans are presented in Appendix E.

The site is located within the Great Barrier Reef wetland protection area, as demonstrated in Figure 2.2 on the following page. The proposed development avoids the use of wetlands for stormwater treatment, as the proposed stormwater treatment device is located outside of the mapped wetland area. The proposed development also avoids the direct discharge

of stormwater into the mapped wetland area. The widened open drain and diversion berm proposed within the Tuan Forest land would generally maintain the surface water hydrology by directing the runoff northward along its current flow path. The proposed development would comply with PO3, PO4 and PO5 of State Code 9 (extract presented in Figure 2.3 below).

Figure 2.2 – Extract from Map of Great Barrier Reef Wetland Protection Areas

Hydrology PO3 Development maintains or improves the existing surface and groundwater hydrology in a wetland protection area.

Water quality

PO4 Development does not unacceptably impact the water quality of the **wetland** in the **wetland protection area** and in the **wetland buffer**.

PO5 Development does not use the wetland in the wetland protection area for stormwater treatment.

Figure 2.3 – Extract from State Code 9: Great Barrier Reef Wetland Protection Areas

3.0 HYDROLOGIC ANALYSIS

3.1 Hydrologic Impact Assessment

The property is affected by overland flow from a catchment to the west, which flows through the site toward the north-eastern site corner (Point-1). An open drain is located at the rear of the site, within Tuan Forest. The open drain flows in a northerly direction, before turning to flow in an easterly direction where flows spread out, flowing across bushland before traversing across Wilkinson Road at Point-2, heading toward the Great Sandy Strait. A catchment plan is presented in Figure 3, Appendix A.

Rational Method calculations were undertaken for the catchments flowing to Point-1 and Point-2 (in accordance with recommendations contained in QUDM 2016). A summary of the peak flows is presented in Table 3.1 below. Detailed Rational Method calculations are presented in Appendix C.

AEP	Point-1 Peak Flow	Point-2 Peak Flow
%	m³/s	m³/s
63	1.16	6.49
50	1.39	7.82
20	2.13	12.01
10	2.67	15.08
5	3.24	18.41
2	4.20	24.03
1	4.93	28.29

Table 3.1 – Rational Method Calculation Summary

URBS hydrologic modelling was undertaken to assess the potential stormwater quantity impacts resulting from the proposed development at Point-1, as well as to produce inflow hydrographs for input into the TUFLOW hydrodynamic model. A schematic representation of the existing URBS model (existing site catchment, developed external catchment, with existing routing) is presented in Figure 4a, Appendix A. URBS data files are presented in Appendix D. A summary of the adopted URBS parameters is presented in Table 3.2 on the following page.

AEP	Storage Coefficient	Non-Linearity Index	Initial Rainfall Loss	Continuing Rainfall Loss
%	α	m	mm	mm/hr
63	1.2	0.8	15	2.5
50	1.2	0.8	15	2.5
20	1.2	0.8	15	2.5
10	1.2	0.8	15	2.5
5	1.2	0.8	15	2.5
2	1.2	0.8	15	2.5
1	1.2	0.8	0	2.5

Table 3.2 – URBS Model Parameters

A comparison of the peak URBS flows (existing site catchment, developed external catchment) and Rational Method flows at Point-1 and Point-2 is presented in Tables 3.3 and 3.4 below.

AEP	Rational Method Flows	URBS Flows	Difference	Difference
%	m³/s	m³/s	m³/s	%
63	1.13	1.07	0.06	5%
50	1.36	1.30	0.06	4%
20	2.08	2.11	0.03	1%
10	2.60	2.74	0.14	5%
5	3.16	3.44	0.28	9%
2	4.10	4.43	0.33	8%
1	4.81	5.29	0.48	10%

Table 3.3 – Comparison of Flows at Point-1

1 able 5.4 - Combanson of Flows at Point-2
--

AEP	Rational Method Flows	URBS Flows	Difference	Difference
%	m³/s	m³/s	m³/s	%
63	5.68	4.65	1.03	18%
50	6.84	6.00	0.84	12%
20	10.55	10.23	0.32	3%
10	13.28	13.75	0.47	4%

5	16.25	17.54	1.29	8%
2	21.29	23.05	1.76	8%
1	25.12	27.51	2.39	10%

The results presented above show that the URBS flows compare favourably with the Rational Method flows. The URBS model would therefore generate flows suitable for comparison of peak flows at Point-1, as well as for adoption in the TUFLOW model as boundary conditions.

A widened open drain and diversion berm is proposed within Tuan Forest upstream of the site. The catchment contributing to flows at Point-1 would be reduced, as the berm would divert a portion of the upstream catchment away from the site. A schematic representation of the developed URBS model (developed site catchment, developed external catchment, with developed routing) is presented in Figure 4b, Appendix A. The impervious fraction of the URBS sub area representing the site was increased to reflect the proposed development. URBS sub area routing was modified to reflect the surface flow regime following the adoption of the widened open drain and diversion berm.

A comparison of the peak URBS flows from the existing and developed URBS model at Point-1 is presented in Table 3.5 below.

AEP	Existing URBS	Developed URBS	Increase	Increase
%	m³/s	m³/s	m³/s	%
63	1.07	0.39	-0.68	-64%
50	1.30	0.45	-0.85	-65%
20	2.11	0.70	-1.41	-67%
10	2.74	0.90	-1.84	-67%
5	3.44	1.07	-2.37	-69%
2	4.43	1.31	-3.12	-70%
1	5.29	1.61	-3.68	-70%

Table 3.5 – Comparison of Flows at Point-1 (Existing v Developed)

The above results show that the proposed development (with the widened open drain and diversion berm) would not increase the peak discharges flowing to Point-1. As such, on-site detention would not be considered to be required for the proposed development.

A comparison of the peak URBS flows from the existing and developed URBS model at Point-2 is presented in Table 3.6 on the following page.

AEP	Existing URBS	Developed URBS	Increase	Increase
%	m³/s	m³/s	m³/s	%
63	4.65	4.70	0.05	1.1%
50	6.00	6.04	0.04	0.7%
20	10.23	10.29	0.06	0.6%
10	13.75	13.87	0.12	0.9%
5	17.54	17.69	0.15	0.9%
2	23.05	23.22	0.17	0.7%
1	27.51	27.80	0.29	1.1%

Table 3.6 – Comparison of Flows at Point-2 (Existing v Developed)

The above results show that the proposed works would result in minor increases to peak discharges at Point-2. The hydraulic impacts of the proposed works at this location are further assessed in TUFLOW (refer Section 4.0).

3.2 Hydraulic Model Boundary Conditions

Inflow hydrographs from the URBS model for flows contributing to the diversion berm (i.e upstream of the site) were adopted as boundary conditions in TUFLOW to assess the impacts of flow diversion (i.e. adopting the diversion berm). The 1% AEP inflow hydrographs adopted in TUFLOW are presented in Figure 3.1 below.

Figure 3.1 – Inflow Hydrographs for TUFLOW

4.0 HYDRODYNAMIC MODELLING

TUFLOW 2D hydrodynamic modelling was undertaken to determine the extent of inundation, to assess potential hydraulic impacts and to set minimum lot levels for the proposed development. The model setup and results are discussed below.

4.1 Existing TUFLOW Model

A schematic of the existing TUFLOW model is presented in Figure 5, Appendix A. The TUFLOW model was based on a 2m grid size with elevation data assigned from the ALS survey data sourced from the Queensland State Government. The inflow hydrographs presented in Figure 3.1 were input into the model as a discharge-time (QT) boundary condition. The downstream boundary condition was set as a height-discharge (HQ) relationship based on the natural ground slope. Manning's roughness coefficient values of n=0.10 and n=0.02 were used in the model to represent private properties and roads respectively.

The existing 1% AEP overland flow contours, depths, velocities and velocity-depths are presented in Figures 6a to 6d, Appendix A respectively. The model results show that the majority of the property would be inundated during a 1% AEP event.

4.2 Developed TUFLOW Model

A schematic of the developed TUFLOW model is presented in Figure 7, Appendix A. The developed model replicates the existing model and incorporates changes to the site condition based on the proposed development. A civil design TIN of the proposed development, widened open drain and diversion berm (prepared by Tony McVey Pty Ltd) was input into the model. Fill was not proposed all the way to the site boundary to allow minor surface runoff to be conveyed around the development. The proposed drainage systems on the site and in front of the site were incorporated using 1d_nwk layers. All other model parameters and inputs remain the same as the existing model.

The developed 1% AEP overland flow contours, depths, velocities and velocity-depths are presented in Figures 8a to 8d, Appendix A respectively. An afflux impact plot of the model results is presented in Figure 9, Appendix A. The plot shows that the proposed development would not create any adverse impacts on neighbouring private properties. The majority of the impacts are contained within the road reserve, within the Tuan Forest land, or in a location where no existing buildings or structures exist.

It is understood that preliminary agreements have been sourced from the stakeholders of Tuan Forest to accept flood impacts within the forest land. Formal agreements would need to be sourced and finalised. In addition, agreements would need to be sourced from neighbouring property owners to accept the minor localised hydraulic impacts on adjoining lands.

4.3 Minimum Lot Levels

Lots are recommended to be set above the highest upstream 1% AEP overland flow level. The highest upstream 1% AEP overland flow level along the western boundary is 3.6 m AHD. The finished surface levels at the rear of Lots 9 to 12 are recommended to be above 3.6 m AHD. The highest upstream 1% AEP overland flow level along the northern boundary is 3.0 m AHD. The finished surface levels of Lots 1 to 8 are recommended to be above 3.0 m AHD. The highest upstream 1% AEP overland flow level along the southern boundary is 3.1 m AHD. The finished surface levels of Lots 13 to 18 are recommended to be above 3.1 m AHD. The finished surface levels of Lots 13 to 18 are recommended to be above 3.1 m AHD. The proposed finished surface levels for each lot would comply with these recommendations.

5.0 STORMWATER QUALITY MANAGEMENT

5.1 State Planning Policy (July 2017)

The State Planning Policy (SPP) sets out the requirements for water quality in the interest of the State. Developments which trigger the requirements summarised in Table 5.1 below would need to meet water quality objectives listed in Table B, Appendix 2 of the SPP.

State Planning Policy Criteria	Application to Development
 (1) A material change of use for urban purposes that involves a land area greater than 2500 square metres that: (a) will result in an impervious area greater than 25 per cent of the net developable area, or 	Criterion is NOT applicable to development.
(b) will result in six or more dwellings, or	Criterion is NOT applicable to development.
(2) Reconfiguring a lot for urban purposes that involves a land area greater than 2500 square metres and will result in six or more lots, or	Criterion is applicable to development.
(3) Operational works for urban purposes that involve disturbing more than 2500 square metres of land.	Criterion is NOT applicable to development.

Table 5.1 – Development	Applications	affecting Receiv	ing Waters
-------------------------	---------------------	------------------	------------

The proposed development triggers the SPP, hence water quality objectives indicated in Table B, Appendix 2 of the SPP would need to be met.

5.2 Water Quality – Construction Phase

During the construction phase of a development, the pollutants listed in Table 5.2 are typically generated. Measures are required during the construction phase to manage each of these pollutants. These measures may include but are not limited to; bins and mini-skips, erosion and sediment control measures (discussed below), wash down and spill containment areas, bunds, spill clean-up kits, street sweeping and chemical agents.

Pollutant	Source
Litter	Paper, construction packaging, food packaging, cement bags, off- cuts
Sediment	Unprotected exposed soils and stockpiles during earthworks and building operations
Hydrocarbons	Fuel and oil spills leaks from construction equipment
Toxic materials	Cement slurry, asphalt primer, solvents, cleaning agents, wash waters (e.g. from tile works)
pH altering substances	Acid sulphate soils, cement slurry and wash waters

 Table 5.2 – Pollutants Generated during the Construction Phase

5.2.1 Erosion and Sediment Control

During the construction phase of the development, an Erosion and Sediment Control Program (E&SCP) is required to minimise water quality impacts. Such an E&SCP should provide complete and detailed instructions on the following procedures;

- Before construction activities begin, sediment fences should be constructed on the downstream site boundaries and at the base of all proposed soil stockpiles;
- Areas for plant and construction material storage should be designated. Runoff from these areas should be directed to small holding ponds in case of spillages;
- Catch drains at the downstream boundary of construction activities should also be created to ensure that any sediment-laden runoff is contained and directed into a sediment basin and not permitted to flow unmitigated to downstream areas;
- Sediment basins should be constructed at appropriate locations to collect sediment at the downstream ends of the catch drains that convey runoff from exposed areas;
- Site personnel should be educated on the sediment and control measures implemented on site; and
- Following rainfall events greater than 20mm, inspection of silt fences, sedimentation basins and other erosion control measures should be carried out. Where necessary, collected material should be removed and damaged equipment should be replaced immediately.

5.3 Water Quality – Operational Phase

During the operational (post-construction) phase of the proposed development, the following pollutants are typically generated;

- Sediment,
 Heavy Metals,
- Litter,
 Thermal Pollution,
- Faecal coliforms,
 Nutrients (N & P) and
- Hydrocarbons,Surfactants.

5.3.1 Water Quality Objectives

Key pollutant levels will be reduced to the levels indicated in Table B, Appendix 2 of the State Planning Policy. The Water Quality Objectives are summarised in Table 5.3 below.

Parameter	Load-based Reduction
Total Suspended Solids (TSS)	85%
Total Phosphorus (TP)	60%
Total Nitrogen (TN)	45%
Gross Pollutants > 5mm	90%

Table 5.3 – Water Quality Objectives for Central Queensland (South)

Note that the percentage reduction refers to a comparison between the un-mitigated developed site and the mitigated developed site.

6.0 STORMWATER QUALITY MODELLING

A stormwater treatment train is proposed to meet the WQOs stated in Section 5.3.1. The Stormwater Quality Improvement Device (SQID) for the treatment train was selected based on site constraints, opportunities and practicality.

A bio-retention basin has been selected to meet the water quality objectives. Details of the MUSIC stormwater quality analysis and specifications of the proposed system are presented below.

6.1 Source Nodes

A schematic of the MUSIC sub catchments is presented in Figure 10, Appendix A. The MUSIC source nodes, their areas, node type and fraction impervious proportions are summarised in Table 6.1 below. The adopted roof area for each new lot is 250 m². The small area around the perimeter of the site which remains as grass and which would not flow to the bio-retention basin have been excluded from the MUSIC model.

Source Node	Area	Туре	Fraction Impervious				
Residential Roof	0.450 ha	Residential Roof	100%				
Residential Roads	0.373 ha	Residential Road	60%				
Residential Ground	2.897 ha	Residential Ground	15%				

 Table 6.1 – Source Node Fractions Impervious

Rainfall-runoff parameters were assigned to the source nodes in accordance with the Water by Design MUSIC Modelling Guidelines Version 1.0 - 2010 Residential Use of the site. These parameters are summarised in Table 6.2 below.

F	Residential	
Impervious Area Properties	Rainfall threshold (mm/day)	1
	Soil storage capacity (mm)	500
	Initial storage (% of capacity)	10
Pervious Area Properties	Field Capacity (mm)	200
	Infiltration Capacity Coefficient – a	211
	Infiltration Capacity Exponent – b	5
	Initial depth (mm)	50
Croundwater Dreporties	Daily recharge rate (%)	28
Groundwater Properties	Daily base flow rate (%)	27
	Daily deep seepage rate (%)	0

Table 6.2 – Rainfall – Runoff Parameters

Pollutant export parameters were assigned according to the Water by Design MUSIC Modelling Guidelines Version 1.0 - 2010. The pollutant export parameters adopted in the MUSIC model are summarised in Table 6.3 below.

Source		Logı (mş	₀ TSS g/L)	Log₁ (mք	₀ TP g/L)	Log10 TN (mg/L)				
Sourc	e	Base flow	Storm flow	Base flow	Storm flow	Base flow	Storm flow			
Deef	Mean	NA	1.30	NA	-0.89	NA	0.26			
ROOI	Std Dev	NA	0.39	NA	0.31	NA	0.23			
Dood	Mean	1.00	2.43	-0.97	-0.30	0.20	0.26			
Road	Std Dev	0.34	0.39	0.31	0.31	0.20	0.23			
Cround	Mean	1.00	2.18	-0.97	-0.47	0.20	0.26			
Ground	Std Dev	0.34	0.39	0.31	0.31	0.20	0.23			

Table 6.3 – Pollutant Export Parameters (Residential)

6.2 Treatment Node – Bio-Retention

A bio-retention basin is proposed to meet water quality objectives. The input parameters adopted in MUSIC are presented in Table 6.4 below.

Inlet Properties	Bio-Retention
Low Flow Bypass (m ³ /s)	0
High Flow Bypass (m ³ /s)	100
Extended Detention Depth	0.3 m
Surface Area	500 m²
Filter Area	500 m²
Unlined Filter Media Perimeter	0.01 m
Saturated Hydraulic Conductivity	200 mm/hr
Filter Depth	0.6 m
Exfiltration Rate	0 mm/hr

Table 6.4 – Bio-Retention Parameters

A potential location for the bio-retention basin is presented on plans in Appendix E. The final location and specifications for the basin would be finalised during the detailed design stage.

6.2.1 Maintenance

A bio-retention basin maintenance checklist is presented in Appendix F.

6.3 MUSIC Analysis

The quality of stormwater runoff and the impact of the proposed SQIDs were analysed using MUSICX version 1.10.0 in accordance with the water quality objectives from Table B, Appendix 2 of the State Planning Policy.

The MUSIC model was based on the 1991 to 2000 rainfall series for Maryborough with 6minute time steps. The MUSIC model schematic is presented in Figure 6.1 below. The MUSIC modelling results are presented in Table 6.5 below.

Figure 6.1 – MUSIC Model Schematic

Indicator	Annual Loa	ads (kg/yr)	Reduction					
indicator	Without SQIDs	With SQIDs	Actual	Target				
TSS	2221.43	256.09	88%	85%				
TP	4.64	0.85	81%	60%				
TN	26.25	10.29	60%	45%				
GP	328.26	0.00	100%	90%				

Table 6.5	– MUSIC	Model	Results
-----------	---------	-------	---------

The results above indicate that the required water quality objectives are met for the proposed development.

7.0 CONCLUSIONS

This report has been prepared to address the following issues associated with the proposed Reconfiguration of Lot (ROL) on Lot 51 Wilkinson Road, Tuan:

- Identify the extent of flooding during a major overland flow event, assess potential impacts on neighbouring properties and set minimum lot levels.
- Assess potential stormwater quantity impacts from the proposed development.
- Conceptualise a stormwater quality treatment train for the proposed development.

The TUFLOW model results show that the proposed development would not create any adverse impacts on neighbouring private properties. The majority of the impacts are contained within the road reserve, within the Tuan Forest land, or in a location where no existing buildings or structures exist. Minimum lot level recommendations are presented in Section 4.3.

URBS hydrologic model results show that the proposed development would not increase the peak discharges flowing to the location immediately downstream of the site. There would not be any adverse impacts on downstream properties. As such, on-site detention would not be considered to be required for the proposed development.

MUSIC model results show that a 500 m² filter area bio-retention basin would ensure the proposed development meets the water quality objectives required under the State Planning Policy (July 2017).

The site is located within the Great Barrier Reef wetland protection area. The proposed development avoids the use of wetlands for stormwater treatment, as the proposed stormwater treatment device is located outside of the mapped wetland area. The proposed development also avoids the direct discharge of stormwater into the mapped wetland area. The widened open drain and diversion berm proposed within the Tuan Forest land would generally maintain the surface water hydrology by directing the runoff northward along its current flow path. The proposed development would comply with PO3, PO4 and PO5 of State Code 9.

Steve Hughes BE Civil, MIE Aust, CPEng, RPEQ 16468

LIST OF APPENDICIES

APPENDIX A – Figures

APPENDIX B – Photographs

APPENDIX C – Rational Method Calculations

APPENDIX D – URBS Data

APPENDIX E – Design Plans

APPENDIX F – Bio-Retention Basin Maintenance Checklist

APPENDIX A

Figures

APPENDIX B

Photographs

Photograph 1 – Existing site condition (looking west)

APPENDIX C

Rational Method Calculations

			RAT	IONA		HOD C	ALCU	LATI	ONS		Table	С	1	а				RATI	ONAL	METHO	DD CA	LCUI	ATIO	NS		Table	С	1	b
oiect: '	Tuan							J90	009						Project:	Fuan							J90	09					
cation:	Point 1	1 - To	otal Fig	ow - DS						1					Location:	Point	2 - Tot	al Flow	/ - DS						1				
mments:								ł							Comments:														
Jiiiiients.]							connients.														
ne of Cor	ncentrati	ion			1		Rainfall D	ata:							Time of Con	centrat	ion					Rainfall D	ata:						
r Catchment	Slope		0.5%					Rai	nfall Intens	sity Frequer	ncy Duratio	n data for T	TUAN		Upper Catchment S	Slope		0.5%					Ra	infall Inter	sity Frequer	ncy Duratio	n data for	TUAN	
sheet flow a	cross dense ç	grass	30	min											200m sheet flow a	cross dense	grass	40	min										
I Length			1000	metres											Travel Length			2500	metres										
Time (Arqu	e)		13	min											Travel Time (Arque	2)		24	min										
	Delta for		4													Delta for		4											
of Concent	ration		82.0	min]										Time of Concent	ration		136.0	min										
ub-Area	as and R	unoff	Coeffic	cients					_						Sub-Are	as and I	Runoff	Coeffici	ents										
	Area		C10	-	Areas inclu	uded in Cal	culations			Separa	te c100 >	1.0 and c1	100 < 1.0			Area	С	10		Areas inclu	ded in Calc	ulations			Separa	te c100 >	1.0 and c	100 < 1.0	
at the D1	ha 21.00	Exist	Dev	Con	dition	Area	C10	C10 x A	C10	C10	C10 x A	C10 x A	Area	Area	Creation D1	ha	Exist	Dev	Cond	lition	Area	C10	C10 x A	C10	C10	C10 x A	C10 x A	Area	Area
at to P1	220.00	0.00	0.53	Dev	еюреа	31.00	0.53	16.43	0.53		10.43		31.00		Cmt to P1	220.00	0.00	0.53	Deve	loned	220.00	0.53	116.60	0.53		116 60		220.00	
	220.00	0.00	0.55												0	220.00	0.00	0.55	2010	lopeu	220.00	0.00	110.00	0.55		110.00		LLUIUU	
																													_
			_																										
			-																										
						21.00		Cum			16.42	0.00	21.00	0.00							220.00		Com			116.60	0.00	220.00	0.00
						31.00		Total		0.530	10.45	16.430	51.00	31,000						L	220.00	1	Total		0.530	110.00	116 600	220.00	220.0
								Individual	0.530	0.000	16 430	0.000	31 000	0.000									Individual	0.530	0.000	116 600	0.000	220.000	0.000
								Individual	0.550	0.000	10.150	0.000	51.000	0.000									marriada	0.550	0.000	110.000	0.000	LEGIGGG	0.000
	[Discha	arge Ca	lculation	าร	1											Discha	rge Cal	culations	;									
		tc			82.0												tc			136.0									
	C100>1		Average	e c10	0.000		Total Ca	atchment	1							C100>1		Average	c10	0.000		Total Ca	atchment	Ĩ					
			-	Area (ha)	0.00		31	1 ha											Area (ha)	0.00		22	0 ha						
	C100<1	c10 - 2	Average	2	0.530	1										C100<1	c10 - 2	Average	. /	0.530				•					
			9-	Area (ha)	31.00												_		Area (ha)	220.00									
								Discharge		T													Discharge		1				
	Depth	AEP	Fy	Runoff C	Coefficients	Rainfall		m ³ /s					Discharge	% of 63%		Depth	AEP	Fy	Runoff Co	efficients	Rainfall		m ³ /s			Г		Discharge	% of P
	mm	%		C100>1	C100<1	(mm/hr)	1	2	Total			EY	m ³ /s	AEP		mm	%		C100>1	C100<1	(mm/hr)	1	/ 3	Total			EY	m ³ /s	AEP
						· · · · · · · · · · · · · · · · · · ·	-						111/3								·····							111/3	1
	42	63	0.80	0.00	0.42	30.99	0.00	1.13	1 1 2	1		12	0.283	25%		50	63	0.80	0.00	0.42	21.93	0.00	5.68	5 68		ľ	12	1 421	25%

65

78

90

107

120

20

10

5

2

1

0.5

0.95

1.00

1.05

1.15

1.20

0.00

0.00

0.00

0.00

0.00

0.50

0.53

0.56

0.61

0.64

47.91

56.98

66.00

78.17

87.88

0.00

0.00

0.00

0.00

0.00

2.08

2.60

3.16

4.10

4.81

2.08

2.60

3.16

4.10

4.81

5.48 6.42 4

3

2

1.3

1

0.566

0.679

0.849

1.018

1.132

50%

60%

75%

90%

100%

78

93

108

130

146

20

10

5

2

1

0.5 0.2 0.95

1.00

1.05

1.15

1.20

0.00

0.00

0.00

0.00

0.00

0.50

0.53

0.56

0.61

0.64

34.29

40.99

47.79

57.16

64.63

0.00

0.00

0.00

0.00

0.00

10.55

25.12

10.55

25.12

29.83 36.42

13.28 **13.28**

16.25 **16.25**

21.29 **21.29**

4

3 2

1.3

1

2.842

3.410

4.263

5.115

5.684

50%

60%

75%

90%

100%

APPENDIX D

URBS Data

9009_Ex.DAT

"Index", "Area", "UF", "UR", "I"
#1,0.23117,1.00,0.00,0.05
#2,0.13860,1.00,0.00,0.05
#3,0.09571,1.00,0.00,0.05
#4,0.07232,1.00,0.00,0.05
#5,0.27893,1.00,0.00,0.05
#6,0.20129,1.00,0.00,0.05
#7,0.03762,1.00,0.00,0.05
#8,0.05160,1.00,0.00,0.05
#9,0.08068,1.00,0.00,0.05
#10,0.04885,1.00,0.00,0.05
#11,0.15386,1.00,0.00,0.05
#12,0.15437,1.00,0.00,0.05
#13,0.00655,1.00,0.00,0.05
#14,0.00454,1.00,0.00,0.05
#15,0.00272,1.00,0.00,0.05
#16,0.01157,1.00,0.00,0.05
#17,0.00128,1.00,0.00,0.05
#18,0.00868,1.00,0.00,0.05
#19,0.04047,0.00,1.00,0.05
#20,0.07365,0.00,1.00,0.20
#21,0.00742,0.00,1.00,0.80
#22,0.30520,1.00,0.00,0.05
#23,0.19305,0.80,0.20,0.15

9009_Ex.U

Tuan - Existin	3		
MODEL: Basic			
USES: L, U			
Default Paramet	ters: al	pha=1.20	m=0.8
Catchment File	=9009 Ex	.dat	
Rain #13	T.=0 067		
Storo	10.007		
Dein #14	T-0 040		
Raill #14	L-0.040		
Get.		- 0 000	
Route thru	#15	T=0.080	
Store.			
Rain #15	L=0.059		
Store.			
Rain #16	L=0.067		
Get.			
Get.			
Route thru	#17	L=0.097	
Store.			
Rain #17	L=0.053		
Store.			
Rain #18	L=0.090		
Get.			
Get.			
Route thru	#11	T.=0 030	
Store	11	2 0.000	
Bain #9	T.=0 140		
Route thru	#11	T.=0 241	
Add Rain	#11	L=0 356	
Cot	11 1 1	н 0.550	
Route thru	#19	T-0 148	
Add Dain	#10	L-0.140	
Drint D1	#19	1-0.101	
PIIIIL. PI	#01	T-0 042	
Route thru	#∠⊥ #⊃1	L-0.042	
Add Rain	#∠⊥	L-0.241	
Store.	T 0 1 0 1		
Rain #/	L=0.131	T 0 1 5 7	
Route thru	#8	L=0.157	
Add Kain	#8	L=0.16/	
Route thru	#10 #10	L=0.200	
Add Rain	#10	L=0.104	
Route thru	#12	L=0.344	
Add Rain	#12	L=0.378	
Route thru	#20	L=0.153	
Add Rain	#20	L=0.217	
Store.			
Rain #1	L=0.346		
Route thru	#2	L=0.534	
Store.			
Rain #2	L=0.231		
Store.			

```
#3
             L=0.286
Rain
Get.
Get.
Route thru
             #4 L=0.599
Store.
Rain
      #4
             L=0.301
Store.
Rain
      #5
             L=0.351
Get.
Get.
Route thru
              #6
                    L=0.350
Add Rain
              #6
                    L=0.419
Route thru
             #20
                    L=0.323
Store
      #22
             L=0.412
Rain
                    L=0.347
Route thru
              #23
Add Rain
              #23
                    L=0.354
Get.
Get.
Get.
Print. P2
end of catchment details.
```

9009_Dev1.DAT

"Index", "Area", "UF", "UR", "I" #1,0.23117,1.00,0.00,0.05 #2,0.13860,1.00,0.00,0.05 #3,0.09571,1.00,0.00,0.05 #4,0.07232,1.00,0.00,0.05 #5,0.27893,1.00,0.00,0.05 #6,0.20129,1.00,0.00,0.05 #7,0.03762,1.00,0.00,0.05 #8,0.05160,1.00,0.00,0.05 #9,0.08068,1.00,0.00,0.05 #10,0.04885,1.00,0.00,0.05 #11,0.15386,1.00,0.00,0.05 #12,0.15437,1.00,0.00,0.05 #13,0.00655,1.00,0.00,0.05 #14,0.00454,1.00,0.00,0.05 #15,0.00272,1.00,0.00,0.05 #16,0.01157,1.00,0.00,0.05 #17,0.00128,1.00,0.00,0.05 #18,0.00868,1.00,0.00,0.05 #19,0.04047,0.00,1.00,0.31 #20,0.07365,0.00,1.00,0.20 #21,0.00742,0.00,1.00,0.80 #22,0.30520,1.00,0.00,0.05 #23,0.19305,0.80,0.20,0.15

9009_Dev1.U

Tuan - MODEL:	Develop Basic	nentl		
USES: L	, U			
Default	Parame	ters: al	pha=1.20	m=0.8
Catchme	nt File	=9009_De	v1.dat	
_				
Rain	#13	L=0.067		
Store.				
Rain	#14	L=0.046	1	
Get.				
Route t	hru	#15	L=0.086	
Store.				
Rain	#15	L=0.059	1	
Store.				
Rain	#16	L=0.067		
Get.				
Get.				
Route t	hru	#17	L=0.097	
Store.				
Rain	#17	L=0.053		
Store.				
Rain	#18	L=0.090	1	
Get.				
Get.				
Route t	hru	#17	L=0.287	
Route t	hru	#21	L=0.141	

Store. Rain #19 L=0.161 Get. Print. Pl Route thru #21 L=0.042 L=0.241 Add Rain #21 Store. Rain #9 Rain #9 L=0.140 Route thru #11 L=0.241 Add Rain #11 L=0.356 L=0.356 L=0.203 Route thru #12 Store. Rain #7 L=0.131 #8 I #8 I L=0.157 Route thru

 #8
 L=0.157

 #8
 L=0.167

 #10
 L=0.200

 #10
 L=0.104

 #12
 L=0.344

 #12
 L=0.378

 Add Rain Route thru Add Rain #12 #12 Route thru Add Rain Get. Route thru #6 L=0.088 Store. Rain #1 L=0.346 #2 L=0.534 Route thru Store. Rain #2 L=0.231 Store. Rain #3 L=0.286 Get. Get. Route thru #4 L=0.599 Store. Rain #4 L=0.301 Store. Rain #5 L=0.351 Get. Get. Route thru #6 L=0.350 Add Rain #6 L=0.419 Get. #20 L=0.323 Route thru Store. Rain #20 L=0.217 Store. Rain #22 L=0.412 #23 L=0.347 #23 L=0.354 Route thru Add Rain Get. Get. Get. Print. P2 end of catchment details.

APPENDIX E

Design Plans

LEGEND

LEGEND

R.P. DETAILS

APPENDIX F

Bio-Retention Basin Maintenance Checklist

BIORETENTION BASIN MAINTENANCE CHECKLIST									
Inspection Frequency:	1 to 6 monthly	Date of V	Date of Visit:						
Location:									
Description:									
Asset I.D.									
Site Visit by:									
INSPECTION ITEMS:			Y	Ν	Action Required (details)				
Sediment accumulation at inflow points?									
Litter within basin?									
Erosion at inlet or other key structures?									
Traffic damage present?									
Evidence of dumping (e.g. building waste)?									
Vegetation condition satisfactory (density, weeds etc)?									
Watering of vegetation required?									
Replanting required?									
Mowing/slashing required?									
Clogging of drainage points (sediment or debris)?									
Evidence of ponding?									
Damage/vandalism to structures present?									
Surface clogging visible?									
Drainage system inspected?									
Resetting of system required?									
COMMENTS									